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ABSTRACT

We introduce Code Park, a novel tool for visualizing codebases in a 3D game-like environment.

Code Park aims to improve a programmer’s understanding of an existing codebase in a manner that

is both engaging and fun to be appealing especially for novice users such as students. It achieves

these goals by laying out the codebase in a 3D park-like environment. Each class in the codebase is

represented as a 3D room-like structure. Constituent parts of the class (variable, member functions,

etc.) are laid out on the walls, resembling a syntax-aware “wallpaper”. The users can interact with

the codebase using an overview, and a first-person viewer mode. They also can edit, compile and

run code in this environment. We conducted three user studies to evaluate Code Park’s usability

and suitability for organizing an existing project. Our results indicate that Code Park is easy to get

familiar with and significantly helps in code understanding. Further, the users unanimously believed

that Code Park was an engaging tool to work with.
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CHAPTER 1: INTRODUCTION

Integrated development environments (IDE) for writing code with programming languages have

been around for decades. Newcomers to the field of software development quickly discover

that a large number of tools that they will spend the majority of time working with are either

text-based or graph-based. The common observation in almost all programming tools today is

that they are inherently 2D. This may not pose a significant issue for an expert developer when

writing code. However, learning new language or even understanding an existing code base is

often a huge undertaking for a novice programmer [6]. This often leads to combing through

hundreds of files that are scattered in usually of directories to understand how somebody else’s code

works. Code understanding becomes even more important when a programmer wants to debug

an existing piece of software. The user’s understanding usually comes from studying and reading

the code. However, this form of understanding can quickly become tedious and boring, especially

discouraging beginners from trying to learn by reading code. Our hypothesis is that this issue can

be mitigated with code visualizers that display constituent parts of a code base in a more clear and

coherent manner.

Code visualization techniques assist developers in gaining insights into a codebase that may

otherwise be difficult or impossible to acquire via the use of a traditional text editor. Over the years,

various techniques have been proposed to address different issues. For instance, SeeSoft [7] maps

each line of code to an auxiliary UI bar such that the color of the bar represents a property of the

code, e.g. red rows could represent recently changed lines. Code Bubbles [1] organizes source into

interrelated editable fragments illustrated as bubbles within the user interface, and CodeCity [3]

uses a 3D city-like structure to visualize the relative complexity of modules within a codebase. Each

of these tools attempt to show code in a new form that make learning and understanding code easier

and more efficient. However, among all of the techniques that have been explored, little attention

1



www.manaraa.com

has been given to how source code can be visualized in order to help developers become familiar

with and learn a new codebase.

The task of learning a new codebase is fraught with many issues, three of which include memoriza-

tion, cognitive load, and engagement [8, 9, 10]. Imagine a new hire set to study a proprietary project

that is a complex hierarchical conglomeration of thousands of source files. Indeed memorizing

the structure of such a system is a difficult chore, not to mention mentally exhausting as well as

potentially tedious and likely boring . To address these issues, we introduce Code Park, a new 3D

code visualization tool that aims to improve a programmer’s understanding of an existing codebase

in a manner that is both engaging and fun. Code Park organizes source code into a 3D scene in

order to take advantage of human’s spatial memory capabilities [11] and help one better understand

and remember the architecture. By extending into 3D space, Code Park is also able to provide an

exciting game-like environment, thereby encouraging engagement and subverting boredom. Code

Park also supports two unique points of view: exo-centric and ego-centric, which allows one to

examine the codebase at different granularities.

Our design goals with Code Park are threefold. We aimed to create a code visualization tool that

helps user in becoming familiar with and memorizing an existing codebase. This tool must be easy

to work with and must show information in a form which reduces the user’s cognitive load. Finally,

the tool must be engaging and enjoyable to work with. We designed Code Park in three iterative

step. In each step we evaluated our design by conducting a user study. Based on the result of the

previous user study we evolved our design and created a new environment or added new features.

Specifically the following are the contributions of our exploratory work:

1. Creating a fun, engaging and unconventional tool for improved code understanding.

2. Gauging user interest and examining the usability of such tool.

2
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3. Displaying the source code itself in a 3D environment (rather than a metaphorical representa-

tion) and facilitate “intimate” interaction with the code via an ego-centric mode.

4. Editing, compiling and debugging code in 3D environment.

Reader’s Guide

In this section a brief explanation of each chapter is given.

Chapter 2 - A review of relevant literature in the field of code visualization is presented.

Chapter 3 - Covers first iteration of Code Park that called Code House and how it was created.

Chapter 4 - Presents an evaluation and discussion on Code House.

Chapter 5 - Talks about the design and implementation process of the second iteration of Code Park:

Code Visualizer.

Chapter 6 - Discuss the user study and its results on Code Park.

Chapter 7 - Presents the third and the last version of Code Park: A 3D IDE.

Chapter 8 - Covers an evaluation and its result’s discussion of Code Park: A 3D IDE.

Chapter 9 - Limitation and plans for future work are laid out

Chapter 10 - Concluding remarks for the presented work are presented.

Appendix A - IRB Approval Letters

Appendix B - All the questionnaires and assignment that was used in evaluations.

3
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CHAPTER 2: RELATED WORK

There is a body of work available in the literature focusing on software visualization. These efforts

can mostly be put into two categories. The ones which perform 2D visualization and the ones

that perform 3D visualization. SeeSoft [7], one of the earliest visualization metaphors, allows one

to analyze up to 50,000 lines of code by mapping each line of code into a thin row. Marcus et

al. [12] added a new dimension to SeeSoft to support an abstraction mechanism to achieve better

representation of higher dimensional data. Goldberg and Robson introduced SmallTalk, one of the

first visualized development environment [13].

Recently, there have been more work focusing on 2D visualization. Code Bubbles [1] suggested a

collection of editable fragments that represent functions in a class (see Figure 2.1). Code Gestalt

[14] used tag overlay and thematic relations. Lanza and Ducasse [15] proposed categorizing

classes and their internal objects into blocks called Blue Prints. Gutwenger et al. [16] proposed an

approach for improved aesthetic properties of UML diagrams when visualizing hierarchical and

non-hierarchical relations. Radfelder and Gogolla [17] extended UMLs by adding third and fourth

dimension of data in a way that they can show both dynamic and static aspect of diagram in a single

view. Balzer et al. [18] introduced hierarchy-based visualization for software metrics using Voroni

Treemaps. Additionally, Holten [19] used both hierarchical and non-hierarchical data to visualize

adjacency relations in a software. Hawes et al. [20] presented CodeSurveyor a spatial visualization

technique that aims to support code comprehension in large codebases by allowing developers to

view large-scale software at all levels of abstraction. The common observation among these efforts

is that they are all based on 2D environments and were mostly suitable for expert users.

4
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Figure 2.1: Code Bubble: suggested a collection of editable fragments that represent functions in a
class [1].

Prefer 3D over 2D?

Remembering code structure will result in faster development so it is an essential part of being a

programmer. Specifically, 3D environments tap into the spatial memory of the user and help with

memorizing the position of objects [11]. These objects could be classes or methods. There are

also studies which provide evidence that spatial aptitude is a strong predictor of performance with

computer-based user interfaces. For instance Cockburn and McKenzie [21] have shown that 3D

interfaces that leverage the human’s spatial memory result in better performance even though some

of their subjects believed that 3D interfaces are less efficient. Robertson et al. [22] have also shown

that spatial memory does in fact play a role in 3D virtual environments. As a result, there are a

variety of work available in the literature that are focused on 3D software visualization.

5
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Figure 2.2: A Solar System Metaphor for 3D Visualisation of Object Oriented Software Metrics [2].

A number of researchres have attempted to solve the problem of understanding code structure.

Graham et al. [2] suggested a solar system metaphor, in which each planet represented a Java class

and the orbits showed various inheritance levels (See Figure 2.2). Balzer et al. [23] presented the

static structure and the relation of object-oriented programs using 3D blocks in a 2D landscape

model. Bonyuet et al. [24] suggested a 3D software platform for visualization and manipulation of

complex and large softwares called Code Mapping. Code Mapping was color coded for function,

call position and experimental interaction data. Greevy et al. [25] worked on visualizing executive

trace of software in 3D. They visualized dynamic behaviors of execution traces in terms of object

creations and interactions.

6
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Figure 2.3: Code City: focus on the visualization of large and complex codebases using city
structures [3].

Among these, the city metaphor is one of the most populer ideas. CodeCity [3] is an example of a city

metaphor. CodeCity focus on the visualization of large and complex codebases using city structures

where the number of methods in each class represented the width of the buildings and the number

of attributes represented their height (see Figure 2.3). Panas et al. [26] used Vizz3D1 to visualize

communication between stakeholders and developers in the process of software implementation.

Alam and Dugerdil [27] introduced the Evospaces visualization tool in which they represent files

and classes with buildings similar to CodeCity. Additionally, they showed the relations between the

classes using solid pipes. There are other works that leverage such visualization metaphors such as

[28] and [29]. The common property of these tools is that most of them only showed the name of

the classes in their environment which is not instrumental for learning purposes and again, they are

1http://vizz3d.sourceforge.net/

7
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mainly targeting experienced developers.

Figure 2.4: Scratch: designed to be fun and likable [4].

What about being engaging?

The fun and engaging aspect of programming tools, especially for teaching purposes, has gained

attention in recent years. ToonTalk [30] is a general purpose programming system that animated

source code in a video game like environment. It was created as a self teaching programming system

which was suitable for children to use. Alice by Cooper et al. [31] is another tool that emphasize

this aspect. Alice is a 3D interactive animation environment tool that aims to encourage student

engagement by creating a game-like environment. Resnik et al. [4] introduced a novel development

environment called Scratch that appeals to people who believe their skills are not on par with

8
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experienced developers. They designed their tool in a way that was fun and likable. They also made

it suitable for the youth learners (see Figure 2.4). Parsons and Haden [32] introduced an interactive

tool that helps novice programmers to learn programming principles in an entertaining puzzle like

format where each puzzle’s solution is a complete sample of well written code. AlgoPath by Perrin

et al. [5] is another project focused on teaching algorithm through a 3D game like environment.

In AlgoPath each variable is represented by a figure carrying a backpack and the sequence of

instructions is represented by stone path (see Figure 2.5). Zorn et al. [33] examined the game

Minecraft as a means of increasing interest in programming. They introduced CodeBlocks a block

based programming language in Minecraft environment.

There are many other works that are focused on software visualization. We direct the reader to

comprehensive surveys of different methods available in the work of Teyseyre and Campo [34] and

also Caserta and Olivier [35].

9
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Figure 2.5: AlgoPath: A New Way of Learning Algorithmic [5].

One thing that sets Code Park apart from current tools in the literature is that it is designed to be

suitable for both beginner and experienced developers alike. Saito et al. [36] examined the learning

effects between a visual and a text-based environment on teaching programming to beginners. Their

results deemed the visual environment as a more suitable option for teaching beginners. Also, Code

Park offers code interaction from an exo-centric and an ego-centric perspective, combining the

benefits of both interaction modalities. The addition of the ego-centric view is the key distinction

between the current work and CodeCity [3], as this additional view makes examining the code at

different granularities possible.

10
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CHAPTER 3: CODE HOUSE

Our very first design was a 3D house environment (see Figure 3.1). The code of each class laid out

(like wallpaper) on the walls of different rooms such as shown in Figure 3.3a. The house was a

fixed model and was not procedurally generated. We called this version Code House. The users

would explicitly define where each code wallpaper was placed. The wallpapers were syntax aware.

Users could explore the environment in a first-person view mode. The users had a cross-hair in the

middle of the screen and could walk up to a wall and inspect the code that was attached to the wall.

We filled out each room with different sets of furniture and painted walls with different color to

differentiate rooms from each other (such as bedroom, living room, kitchen, etc) and helped users

remembering each room and the files they were attached in that room (see Figure 3.2).

Figure 3.1: The house’s exterior.

11
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Figure 3.2: Different rooms with different sets of ferniture and different wall color to help user
make this rooms apart.

The reason for starting this way was to get some insight about the users’ ability in using their spatial

memory and determining if they could remember the location of each part of the code base in the

house. Essentially, we were interested in answering one question: can the users remember where

they placed class X in this code-filled house, similar to the way they remember where they left their

(say) toothbrush in real life?

To answer this question we designed four different navigation methods. Users can select each of

these four methods by pressing a button assigned to that method. After that they should chose their

destination from a list of classes that already attached to walls. These four methods are:

Mini Map: Using a mini map that shows the location of each code canvas in the house. With

showing a blueprint of the environment to users it helps users to reach their location and have an

awareness of the environment around them (see Figure 3.3a).

12
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Follow Path: Create a path that leads users to the location of selected code canvases. We used

A* algorithm to create shortest path from user to the destination. The users need to follow this

path through the house and like the mini map, it helps users to reach their destination with having

awareness from the environment they are in (see Figure 3.3c).

Follow Path Automated: It is like the previous method but automated. After this method and the

destination is selected it is automatically moves user on the path toward the selected code canvas.

With this method, users can look around while automatically transporting to their destination and

get more detailed information from the objects surrounded them.

Teleport: Instantly transfer users to the location of each code canvases. It changes the position of

the user in the house and set it in front of the selected destination. It also changes the view point of

the user to always look at the selected code after being teleported. The advantage of this method

is that it takes no time to reach the destination but users are going to lost their awareness of the

environment and how they reached their destination (see Figure 3.3b).

13
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(a) Mini Map (b) Teleport

(c) Follow Path

Figure 3.3: Different type of transport in Code House.
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CHAPTER 4: CODE HOUSE EVALUATION

As mentioned we created the Code House prototype to answer these questions: can users remember

where they put their specific code in the house and which navigation methods is better to help them

remembering? We ran a small user study to evaluate Code House and answer to those questions.

Participants and Experiment Design

We recruited 5 participants (all male ranging in age from 22 to 28) from the Interactive Systems and

User Experience (ISUE) lab at University of Central Florida. We asked each participant to bring one

of their own project that was written with C#. We did so because this version of Code House only

supports C# language. Each participant was asked to attach 8 classes from their project to the walls

in different rooms. After they took a 30 minutes break they were asked to reach two of the classes

with one of the transportation methods and then took another break for 2 hours. At the end, they

were asked if they can remember the location of each class and reach them without any navigation

method. They also were given a post questionnaire to ranked each method using 1 to 10 scale.

Result and Discussion

The goal of our study was to find out if the 3D environment helps users to remember the position of

objects (in our case code canvases) they placed in the house. Out of 5 participants, three of them

remembered the location of all the classes. The other two forgot the location of classes that they

reached with Teleport method. This result shows that the 3D environment itself plays the main role

in remembering objects using spatial memory but the efficient navigation method also has an affect

on memory. It shows that how you reach your destination and how much data you acquire from

15



www.manaraa.com

your surrounding are going to help you to remember the path to the destination.
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Figure 4.1: Mean Score of different navigation type.

Our second observation shows that Teleport was the most popular method of navigation among

the others (see Figure 4.1). The possible explanation for this observation could be that Teleport

transfers users to their destination faster compare to the other methods and because of that they like

it more. The result also shows that they didn’t like Mini Map compared to the other navigation

methods. The possible explanation for this observation could be that with Mini Map they needed to

constantly look at the top right corner of the screen and figured out where they were in the house

and where the desired class was which took longer to reach to their desired destination and made

them frustrated.

Our initial design quickly provided a positive answer to our main question: can the users remember

where they placed class X in 3D environment? We also realized that looking at and interacting with
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the code with such a modality was both appealing and fun according to opinions of two participants

of ours. However, this design was neither easy to use, nor was it helping with code understanding.

Manually placing code in different parts of the house quickly became tedious and there was a lack

of a logical mapping between the code files and the location they were placed inside the house:

what would placing a Queue class inside the kitchen really imply and how are these two concepts

even related? Further, a fixed house model would not be able to indefinitely accommodate today’s

ever expanding code bases. These problems and the concern to find some ways to solve them led us

to change our design which led to Code Park.
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CHAPTER 5: CODE PARK - 3D CODE VISUALIZATION

In our second iteration, we shifted our focus from an entire house to individual rooms. In this

iteration, we implemented procedurally generated code rooms. This way, we could eliminate the

need for manual code placement and could support large code bases. The rooms were placed on

a ground filled with a grassy texture, which resembled a park. The rooms were grouped together

based on the code’s project file structure: files inside the same directory resulted in adjacent rooms

and each group of rooms were labeled by the directory name (see Figure 5.1). This was done in

order to avoid confusion for large code bases that had many files.

Figure 5.1: God’s view with tooltip on top-right.

The size and the color of each room was proportional to the size of the class they contained (larger

classes appeared as larger rooms that had a darker color on their exteriors). Each room had syntax-
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aware wallpapers that had a color theme matching Microsoft Visual Studio’s dark theme (dark

background and gray text with colored language keywords, comments and strings literals that was

created with RTF (Rich Text Format) – see Figure 5.2). The users could explore the environment in

first-person mode. The users could click on the wallpaper with the cross-hair to transition into the

code viewing mode. This would place the camera orthogonal to the wallpaper, allowing the users to

read the code and scroll it (using the mouse wheel) similar to a text editor.

Figure 5.2: Code viewing mode.

One problem we noticed with this means of interaction was that the users were only able to inspect

the code base one part at a time, limiting their ability to quickly jump between each part of the code

base. As such, this iteration was later refined and was augmented by a god’s view mode (see Figure

5.1). In god’s view mode, the user have a top-down view of all the rooms placed on the ground.

This way, the users can first get an overview of all the different pieces of the code base and then
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study it in more detail in the first-person mode. In god’s view, the name of each class is etched on

the roof of each room. This immediately helps the users know which class they are looking at. In

this view, hovering the cursor over each room pops a tool-tip that shows the name of the class in

a larger font at the top right corner of the screen (see Figure 5.1). The users can transition to the

first-person view by clicking one of the code rooms and can go back to god’s view by pressing a

keyboard shortcut. The camera’s transition to and from god’s view is animated. This animation is

not only visually appealing, but is also crucial to maintain the users’ sense of spatial awareness of

the 3D environment [37].

Figure 5.3: Class method overview tooltip.

We improved this mode further by adding syntax parsing features so as to be able to provide

class-level details (such as the list of all member functions) to the user. We used .NET Compiler
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Platform Roslyn1 for the syntax parsing. We needed to create a third party application in order

to use Roslyn because it only supports .Net 4 and above while the Unity that we built Code Park

with only supports .Net 3.5 and below. We used socket programming to send data back and forth

between these two applications.

In god’s view, right-clicking on a room shows a tool-tip balloon that provides a list of the methods

defined in the class corresponding to the room (see Figure 5.3). This allows the users to quickly

glean useful information about each class. This overview is also available on one of the wallpapers

inside each room as shown in Figure 5.4.

Figure 5.4: Class method overview wallpaper.

By supporting syntax parsing, we implemented a commonly used feature in most IDEs, namely

1https://github.com/dotnet/roslyn
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go-to definition. This feature allows the programmers to quickly jump to the location inside a file

where a user-defined type or a variable is defined for the first time. To do so, we parsed all the

project when Code Park starts using Roslyn and created semantic and syntax trees. These trees give

us all the necessary information about the location of each variable and where they are defined.

In Code Park, the users can click on a variable, function or a user-defined type with their cross-hair

and jump to the location where the clicked item is defined for the first time. The jump from a room

to another room is done using two consecutive animated camera transitions: from the current room

to god’s view and from god’s view to the room containing the definition2. After the transition is

finished, the definition of interest is signified by a blinking highlight to focus the user’s attention and

also to indicate the completion of the task. In addition to being visually appealing, these transitions

maintain the users awareness of the 3D environment.

2Unless the definition is inside the same room in which case the camera is transitioned to the definition directly.
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CHAPTER 6: CODE PARK EVALUATION

As mentioned in the Introduction, we designed Code Park to achieve three goals: ease of use, help

with code understanding, and making code understanding fun and engaging. To evaluate these goals

and gauge the usability of our system, we designed and performed a user study. In this version, Code

Park only supports C# projects. Therefore, we decided to compare Code Park with one of the most

prominently used IDEs for C#, namely Microsoft Visual Studio. Given a few programming-related

tasks, we are interested in studying the effects that using Code Park has and also determine how

Code Park helps with code understanding.

Participants and Equipment

We recruited 28 participants (22 males and 6 female ranging in age from 18 to 31 with a mean age of

22.8). Our requirements for participants were that they should be familiar with the C# language and

also have prior experience with Visual Studio. Each participant was compensated with $10 for their

efforts. Each participant was given a pre-questionnaire containing some demographic questions as

well as some questions asking about their experience in developing C# applications. After that, a

short C# skill test was administered to validate their responses in the pre-questionnaire. The skill

test contained five multiple-choice questions with varying difficulties selected from a pool of coding

interview questions1. All the questionnaires and assignment can be found in the Appendix.

After the skill test, each participant was given a set of tasks to perform using each tool (Visual

Studio or Code Park) and filled out a post-questionnaire detailing their experience with each tool.

Prior to performing the tasks on a specific tool, the participants were given a quick tutorial of the

1https://www.interviewmocha.com/tests/c-sharp-coding-test-basic
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tool in question and were given a few minutes to work and get comfortable with it.

At the end of the study, the participants were asked to fill out a post-study questionnaire to share

their overall experience. The duration of the user study ranged from 60 minutes to 90 minutes

depending on how fast each participants progressed towards their assigned tasks.

Our setup consisted of a 50-inch Sony Bravia TV used as the computer screen (see Figure 6.1).

The users used Visual Studio 2013 Community Edition and Unity3D v5.4.0 on a machine running

Microsoft R© Windows 10 64-bit equipped with 16.0 GB of RAM, Intel R© CoreTM i7-4790 processor

with 4 cores running at 3.60 GHz and NVIDIA GeForce GTX 970 graphics processor.

Figure 6.1: The user study setup.

24



www.manaraa.com

Table 6.1: Comparison of the two code bases used in the user studies: Library Manger (LM) and
Memory Game (MG). LoC is lines of code reported by the line counting program cloc .2

Code Base No. Classes LoC LoC (largest class)

LM 14 977 237

MG 16 1753 791

Experiment Design and Procedure

When comparing Visual Studio with Code Park, there are a few considerations involved in order

to design a sound experiment that allows a fair comparison between the two tools. First, Visual

Studio has been in development for many years and most C# developers work with Visual Studio

frequently. As a result, it could be the case that the users who use Visual Studio frequently are

biased towards Visual Studio, because they have had more time to work and get comfortable with it.

Accordingly, devising a fair between-subject design would be difficult.

Second, focusing on a purely within-subject design presents other complications. It is important

to avoid any unwanted learning effects in a within-subject design when the user is working with

both tools. Given a particular code base and a set of tasks, if a user performs those tasks in Visual

Studio and then switches to Code Park to perform the same set of tasks, chances are that those tasks

are performed much faster the second time. This is because the user will have learned the code

base’s structure the first time and can leverage that knowledge in Code Park. To avoid this learning

effect, the user should be given two different code bases to work with. However, care must be taken

when selecting the two code bases, as they should be relatively similar in structure and the degree

of difficulty.

2http://cloc.sourceforge.net/
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Table 6.2: Different experiment groups. Group names are only for tracking the number of partici-
pants in each permutation of the study.

Group First First Second Second
Name Tool Code Base Tool Code Base

A Visual Studio LM Code Park MG

B Code Park MG Visual Studio LM

C Visual Studio MG Code Park LM

D Code Park LM Visual Studio MG

Having two code bases may pose another problem. Even if the two code bases are specifically

chosen to be similar, minor differences between the two could affect the results. Moreover, studying

and learning someone else’s code can quickly become tedious and the users can become fatigued

after using the first tool, affecting their performance in the second tool. Therefore, it is imperative

to mitigate any of these unwanted effects in the study.

Facing with all these considerations, we opted to use a mixed-effects design for our study to benefit

from both of the design modes. In our experiments, each participant used two different code bases

with both tools. Several code bases were considered at first and after a few pilot runs, two code

bases were carefully selected. These selected code bases shared similar structures and properties.

One code base is a console-based library catalog system called Library Manager (LM). The other

code base is a console-based card matching game called Memory Game (MG). The summary of

these code bases are shown in Table 6.1. Note that even though MG contains more lines of code,

some of its largest classes contain mostly duplicate code that handle drawing the shape of each

playing card on the console window. Our assumption with the choice of code bases is that the two

code bases are not significantly different and would not bias our results3.

3This assumption will later be examined in the Discussion section.
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Table 6.3: Participant tasks. Each task was timed. We used these measurements for our quantitative
analysis.

Task

T1 Find a valid username to login into the program.

T2 Find an abstract class in the code base.

T3 Determine the relationship between classes A and B.

T4 Find a desgined bug that causes a program crash.

T5 Pinpoint a reasonable location in the code for adding the necessary logic to support feature X.

To avoid the unwanted effects discussed previously, we permuted the order of tools and code bases

across participants. As a result, each participant started the experiment with either Visual Studio or

Code Park. Also their first tasks were performed on either LM or MG. The possible permutations

divided our participants into four groups detailed in Table 6.2. By recruiting 28 participants, we had

7 participants per group. We randomly assigned a participant to a group. This results in a balanced

mixed-effects design in which all possibilities and orders are considered.

On each code base, the participants are asked to perform five tasks, each with a varying degree of

difficulty. These tasks are presented in Table 6.3. Among these, some tasks force the participant to

explore the code base, whereas other tasks are directly related to a participant’s understanding of the

code base, the program structure and the logic behind it. Tasks T1 and T2 are similar for both code

bases. Task T3 asks about the object-oriented relationship between classes A and B. In LM, this

relationship is inheritance and in MG this relationship is having a common parent class (A and B

are siblings)4. Prior to being tasked with T4, the participants are asked to try out a particular feature

of the program. Upon the trial, the program crashes prematurely and no output is produced. The

participants are told that the reason for this behavior is a simple intentional bug and are tasked with

4The selected classes were the same for all participants.
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finding the likely location of the bug. For task T5, the participants are asked to imagine a scenario

where somebody asks them about their approach for adding a new feature to each program. In LM,

they are asked to add additional menu options for specific types of users. In MG, they are asked to

modify the scoring system to penalize the player for each mistake.

We should note that none of these tasks involve writing any code. This was necessary because

in this version, Code Park did not incorporate a code editor. Also, we are primarily interested in

determining the effects of Code Park on code understanding. The participants are responsible for

showing a suitable location in the logic to add these features. There are multiple valid locations

for each task in each code base and the participants are free to select any of the valid locations.

When performing any of these tasks, the users are explicitly told that they are not allowed to use

the debugging features of Visual Studio, nor the search functionality for finding a specific type or

class. They are, however, permitted to use VS’s built-in go-to definition feature by holding down

the control key and clicking with the mouse on a user-defined type. After performing the tasks, the

participants are given a few questionnaires to fill out.

Metrics

For quantitative data, we recorded the time each participant took to perform each task. The

participants were not told that their performance was being timed, in order to avoid stressing them.

The qualitative measurement was performed using the post-task and post-study questionnaires.

After performing the tasks with each tool, the participants were given a post-task questionnaire that

asked them to share their experience about the tool they worked with. These questions were the

same for both tools and are shown in Table 6.4. The responses to these questions were measured on

a 7-point Likert scale (1 = the most negative response, 7 = the most positive response).
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Table 6.4: Post-task questionnaire. Participants answered these questions on a 7-point Likert scale
after finishing their tasks with both tools. We used this data for our qualitative analysis.

Post Task Questionnaire

Q1 I found it easy to work with Code Park/Visual Studio.

Q2 I found it easy to become familiar with Code Park/Visual Studio.

Q3 Code Park/Visual Studio helps me become familiar with code base’s structure.

Q4 It was easy to navigate through the code with Code Park/Visual Studio.

Q5 It was easy to find the definition of some variable with Code Park/Visual Studio.

Q6 How much did you like Code Park/Visual Studio?

Q7 How did you feel when using the tool?

Q8 It was easy to find what I wanted in the code using Code Park/Visual Studio.

Upon the completion of all tasks, the participants were given a post-study questionnaire to measure

their preferences of both tools from different aspects. This questionnaire is detailed in Table 6.5.

The participants were required to select either Visual Studio or Code Park in their responses to each

question.

Results

As mentioned in the previous section, we recorded quantitative as well as qualitative data. To

analyze these data, we divided all of our participants into two equally sized groups based on their

experience in C# and software development. We leveraged the results of the C# skill-test as well as

the self-declared answers to determine the skill level of each participants. The skill-test questions

were weighted twice as much in order to reduce potential over- or undervaluation of the self-declared

responses.
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Table 6.5: Post-study questionnaire. Participants answered these questions after finished all their
tasks with both tools. The answer to each question is either Code Park or Visual Studio. We used
this data for qualitative analysis.

Post Study Questionnaire

SQ1 Which tool is more comfortable to use?

SQ2 Which tool is more likable?

SQ3 Which tool is more natural?

SQ4 Which tool is easier to use?

SQ5 Which tool is more fun to use?

SQ6 Which tool is more frustrating?

SQ7 Which tool helps you more in remembering the code base structure?

SQ8 Which tool do you prefer for learning a code base?

SQ9 Which tool do you prefer for a code base you are already familiar with for additional work?

SQ10 Which tool do you prefer for finding a particular class/variable?

SQ11 Which tool do you prefer for tracking down a bug?

SQ12 Overall, which tool is better?

As a result, our experiments have three factors: tool, code base and experience. The tool factor has

two levels: Code Park or Visual Studio, the code base factor has two levels: LM or MG and the

experience factor has two levels: beginner or expert.

Quantitative Results

Our quantitative results are based on the time a participant took to complete an assigned task. When

validating ANOVA assumptions, we found that most group response variables failed the Shapiro-

Wilk normality tests. Since our factorial design contains 3 factors (Code base×Tool×Experience)

with two levels each, we decided to use the Aligned Rank Transform (ART) [38] to make our data

suitable for analysis with 3-way ANOVA [39]. The analysis results are presented in Table 6.6.
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Table 6.6: ANOVA results on the quantitative data (time to task completion). Statistically significant
results (95% confidence) are highlighted in gray. The first column (TT) is task time. Code base is
abbreviated as CB. Experience level is abbreviated as Exp.

TT
CB Tool Exp. Tool×CB CB×Exp. Tool×Exp. Tool×CB×Exp.

F1,24 p-value F1,24 p-value F1,24 p-value F1,24 p-value F1,24 p-value F1,24 p-value F1,24 p-value

T1 3.92 = 0.06 12.0 < 0.05 7.53 < 0.05 0.78 = 0.39 0.49 = 0.49 0.19 = 0.66 0.10 = 0.75

T2 1.18 = 0.29 0.32 = 0.58 3.71 = 0.07 0.46 = 0.50 0.63 = 0.44 0.04 = 0.84 0.46 = 0.51

T3 45.2 < 0.05 15.9 < 0.05 5.70 < 0.05 1.02 = 0.32 0.58 = 0.46 6.01 < 0.05 0.00 = 0.95

T4 0.70 = 0.41 0.03 = 0.86 3.56 = 0.07 0.15 = 0.70 0.11 = 0.74 0.10 = 0.76 0.71 = 0.41

T5 7.71 < 0.05 41.9 < 0.05 0.08 = 0.78 3.93 = 0.06 1.35 = 0.26 0.32 = 0.58 0.05 = 0.82
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Figure 6.2: Mean time to task completion by experience level.
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Our tests were not powerful enough to detect significant main effects or interactions in T2 and

T4. For T1, the participants who used Visual Studio completed the task significantly faster than

those who used Code Park (F1,24 = 12.00, p < 0.05) (see Figure 6.3)5. The average task time was

136.82 seconds (σ = 135.48) and 226.71 seconds (σ = 124.15) for Visual Studio and Code Park

respectively. Also the participants who were experts finished the task significantly faster than the

beginners (F1,24 = 7.53, p < 0.05). The average task time was 129.10 seconds (σ = 86.11) and

234.42 seconds (σ = 157.63) for experts and beginners respectively (see Figure 6.2).
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Figure 6.3: Mean time to task completion based on the tool used.

5All error bars are standard error values.
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Figure 6.4: Mean time to task completion based on the code base.

In T3, statistics were similar to T1 for both tool and experience. The participants who used Visual

Studio completed the task significantly faster than those who used Code Park (F1,24 = 15.9, p <

0.05). The average task time was 42.96 seconds (σ = 57.05) and 80.46 seconds (σ = 73.92) for

Visual Studio and Code Park respectively. Also the participants who were experts finished the

task significantly faster than the beginners (F1,24 = 5.70, p < 0.05). The average task time was

44.42 seconds (σ = 57.31) and 79.00 seconds (σ = 74.43) for experts and beginners respectively.

In addition we find two more significant differences in T3. The participants finished the task

significantly faster with LM compared to MG (F1,24 = 45.20, p < 0.05). The average task

time was 30.00 seconds (σ = 42.49) with LM and was 93.42 seconds (σ = 74.87) with MG (see
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Figure 6.4). The other significance shows the interaction effect6 between tool and experience

(F1,24 = 6.01, p < 0.05, η2
p = 0.20 (L)). The average task time for experts who used Visual Studio

was 38.21 seconds (σ = 60.86) and was 50.64 seconds (σ = 52.81) for those who used Code Park.

The average task time for beginners who used Visual Studio was 47.71 seconds (σ = 52.54) and

was 110.29 seconds (σ = 79.76) for those who used Code Park.

In T5 the participants who worked with MG finished the task significantly faster that the ones who

worked with LM (F1,24 = 7.71, p < 0.05). The average task time was 232.25 seconds (σ = 172.43)

for LM and was 155.21 seconds (σ = 116.54) for MG. Also the participants who used Visual Studio

have done it significantly faster than those who used Code Park (F1,24 = 41.91, p < 0.05). The

average task time was 113.03 seconds (σ = 115.61) for Visual Studio and was 274.42 seconds (σ =

141.03) for Code Park.

Qualitative Results

Our qualitative results are comprised of two parts. The first part consists of the responses of the

participants to the Likert-scale questions in the post-task questionnaire. The second part consists of

the responses of the participants to the questions in the post-study questionnaire.

Post-Task Questionnaire

The responses to the Likert-scale questions in our post-task questionnaire failed the Shapiro-Wilk

normality tests. As such, similar to our quantitative results, we used ART [38] to make our data

suitable for analysis with 3-way ANOVA [39]. The summary of our data analyses is shown in Table

6.7. Average ratings for the eight post-task questions are shown in Figure 6.5.

6The effect sizes are reported as η2
p and described as large (L), medium (M) or small (S).
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Table 6.7: ANOVA results on the qualitative data (post-task questionnaire). Statistically significant
results (95% confidence) are highlighted in gray. Code base is abbreviated as CB. Experience level
is abbreviated as Exp.

Question
CB Tool Exp. Tool×CB CB×Exp. Tool×Exp. Tool×CB×Exp.

F1,24 p-value F1,24 p-value F1,24 p-value F1,24 p-value F1,24 p-value F1,24 p-value F1,24 p-value

Q1 1.00 = 0.33 0.94 = 0.34 1.94 = 0.18 2.35 = 0.14 0.55 = 0.47 9.10 < 0.05 0.06 = 0.81

Q2 0.91 = 0.35 7.98 < 0.05 7.81 < 0.05 2.45 = 0.13 0.61 = 0.44 0.00 = 0.98 0.00 = 0.98

Q3 0.02 = 0.89 14.2 < 0.05 2.35 = 0.14 0.70 = 0.41 0.57 = 0.46 0.04 = 0.84 0.08 = 0.77

Q4 0.10 = 0.75 2.10 = 0.16 8.18 < 0.05 0.34 = 0.56 0.12 = 0.74 0.81 = 0.38 0.38 = 0.54

Q5 0.97 = 0.33 0.16 = 0.69 1.07 = 0.31 4.44 < 0.05 0.02 = 0.90 0.23 = 0.64 0.16 = 0.69

Q6 0.38 = 0.54 0.28 = 0.60 3.35 = 0.08 0.14 = 0.71 0.00 = 0.97 0.09 = 0.77 0.07 = 0.80

Q7 0.09 = 0.77 1.10 = 0.30 11.3 < 0.05 0.43 = 0.52 0.05 = 0.82 0.10 = 0.75 0.28 = 0.60

Q8 0.11 = 0.74 0.27 = 0.61 3.04 = 0.09 0.27 = 0.61 0.67 = 0.42 0.03 = 0.86 0.00 = 0.95

Table 6.8: Chi-squared analysis on the post-study responses. Statistically significant results (95%
confidence) are highlighted. The numbers in Visual Studio and Code Park columns represent the
total times each tool was selected by the participant in response to a question. The winner in each
significant category is highlighted.

Question Visual Studio Code Park Chi-squared Test

SQ1 21 7 χ2(1, N = 28) = 7.00 p < 0.05

SQ2 8 20 χ2(1, N = 28) = 5.14 p < 0.05

SQ3 16 12 χ2(1, N = 28) = 0.57 p = 0.45

SQ4 17 11 χ2(1, N = 28) = 1.29 p = 0.26

SQ5 0 28 χ2(1, N = 28) = 28.00 p < 0.05

SQ6 11 13 χ2(1, N = 24) = 0.17 p = 0.68

SQ7 5 23 χ2(1, N = 28) = 11.57 p < 0.05

SQ8 7 21 χ2(1, N = 28) = 7.00 p < 0.05

SQ9 19 9 χ2(1, N = 28) = 3.57 p = 0.06

SQ10 15 13 χ2(1, N = 28) = 0.14 p = 0.71

SQ11 19 9 χ2(1, N = 28) = 3.57 p = 0.06

SQ12 16 11 χ2(1, N = 27) = 0.93 p = 0.34
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Figure 6.5: Mean responses to the post-task questionnaire for Code Park and Visual Studio.

Our tests did not detect significant main effects caused by the code base on the participants’

responses. However, the tool had a significant difference on the responses to the questions, namely

Q2 and Q3. Results show that the participants found it easier to become familiar with Code Park

compared to Visual Studio (F1,24 = 7.98, p < 0.05). They also found Code Park to be more helpful

in becoming familiar with code base’s structure compared to Visual Studio (F1,24 = 14.21, p <

0.05). The significant differences based on experience is not related to our study. Also there was an

interaction effect between tool and experience on the responses to Q1 (F1,24 = 9.10, p < 0.05, η2
p =

0.27 (L)). There was also another interaction effect between tool and code base on the responses to

Q5 (F1,24 = 4.44, p < 0.05, η2
p = 0.37 (L)).
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Post-Study Questionnaire

The post-study questionnaire requires the participant to pick one tool for each question (see Table

6.5). Since each question had only two choices, we used Chi-squared test to analyze the results.

The summary of our data analysis is shown in Table 6.8. We noticed that a few participants left

some of the questions unanswered.

The results indicate that there was a significant difference in being comfortable with using Visual Stu-

dio compared to Code Park (χ2(1, N = 28) = 7.00, p < 0.05). Also Code Park was significantly

more likable than Visual Studio (χ2(1, N = 28) = 5.14, p < 0.05). Every single participant be-

lieved that Code Park was more fun to use than Visual Studio (χ2(1, N = 28) = 28.00, p < 0.05).

Code Park also helped the participants in remembering code base’s structure significantly more

than Visual Studio (χ2(1, N = 28) = 11.57, p < 0.05). For learning a code base the participants

preferred Code Park significantly more than Visual Studio (χ2(1, N = 28) = 7.00, p < 0.05). In

other questions there was no significant deference between Code Park and Visual Studio.

Result and Discussion

The goal of our user study was to determine the degree to which we achieved our design goals with

Code Park. Specifically, we were interested in determining how easy it is to get familiar with Code

Park, how much it helps in understanding a code base, how the users feel about working with it and

how it compares against a traditional IDE such as Visual Studio. Our results can be discussed from

various aspects.

On the tool level and from a qualitative aspect, it is evident that the participants found Code

Park significantly easier than Visual Studio to get familiar with, even though all participants had

prior familiarity and experience with Visual Studio. The participants also found Code Park to be
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significantly more beneficial in becoming familiar with a code base compared to Visual Studio.

Both of these results were obtained regardless of the participant’s experience, i.e. both experts and

beginners found Code Park to be superior than Visual Studio in these two categories. Referring to

the post-study questionnaire, we see that the participants believed Code Park to be more likable

compared to Visual Studio (see Table 6.5). Further, they believed that Code Park not only helped

in learning the code structure but also helped them in remembering the code they studied and also

finding the code elements that they were looking for. The interesting observation here is that all

28 participants unanimously believed that Code Park was more enjoyable which indicates that we

achieved our goal of designing an engaging tool. Note that the results in all these categories were

statistically significant. These results are further corroborated by the written feedback that our

participants provided. Here we provide some of them:

Participant 1: “I enjoyed a lot as it was the first time I was viewing the code in 3D

environment.”

Participant 4: “It is nice visual representation of the code.”

Participant 5: “It is a very nice and visual way for people to conceptualize object

oriented program due to the class association with houses.”

Participant 6: “It is much easier to understand the overall code structure.”

Participant 10: “It is interactive and keep me engaged.”

Participant 13: “UI is good.”

Participant 17: “It is very friendly and easy.”

Participant 19: “We could easily access classes and methods.”

Participant 20: “Easy to look thorough classes/methods and how different classes/methods

interact.”
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Participant 22: “It is easy to navigate with interactive interface.”

Participant 23: “You don’t go through the whole code to find something.”

Participant 26: “The use of spatial representation was well used.”

Participant 27: “Generally easier [than Visual Studio] to understand the structure of

the code”

In the remaining qualitative categories, there was no significant difference observed in users’

responses between Code Park and Visual Studio. This is again interesting because Visual Studio has

been in development since 1997 and has gone through many iterations and refinements, whereas

Code Park has only been in development for about 6 months.

Our results indicate an interaction between the tool and the participants’ experience levels in

responses to Q1. A closer look at the responses reveals that the beginners found Code Park to be

easier to work with. Conversely, experts found Visual Studio to be easier (see Figure 6.6a). This

coincides with what one would expect: the prior experience of the experts with Visual Studio gives

them an edge in performing the assigned task. As a result, those participants found Visual Studio

easier to work with compared to Code Park. When asked about their opinion, one user described

Code Park as ”an amusement park for beginners”. Another user told us: ”With more polish

(smoother experience), I think there is promise for Code Park (especially for new programmers)”.

We observe an interaction effect between tool and the code base in the responses to Q5. The mean

responses for this question are detailed for each code base in Figure 6.6b. From LM to MG, we see

an increase in the mean response values for Code Park, but a decrease in the responses for Visual

Studio. One possible explanation for the small superiority of Code Park over to Visual Studio on

MG is that MG contains more code with larger classes (see Table 6.1). It could be that this larger

size and the existence of more clutter give Code Park a slight edge when finding the definition of
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Figure 6.6: (a) Difference of averages between Visual Studio and Code Park grouped by user
experience for Q1 responses. (b) Difference of averages between Visual Studio and Code Park
grouped by code base for Q5 responses.

variables. This could potentially lead to the conclusion that Code Park is a more favorable tool

for larger projects. However, this conclusion is premature and we believe a more detailed study is

warranted to examine this interaction in more details.

On the tool level and from a quantitative point of view, it is evident that the choice of tool had

a significant effect on time to completion of T1, T3 and T5. In all these cases, participants took

significantly less time to complete their tasks with Visual Studio compared to Code Park. There are

several possible explanations for this observations.
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Figure 6.7: The average time spent on completing T3 based on each tool and the participants’
experience level.

The first is the existence of transition animations in Code Park. As discussed in previous chapter,

the animations were necessary to preserve the user’s sense of environmental awareness. At any

instance of time, the length of these animations depend on the camera’s relative position to each

code room and also the size of the code base. Nevertheless, every animation was at least 1.5 seconds

long. Considering a hypothetical situation where a user is in god’s view and wants to switch to

first-person mode to inspect a code room and then go back to god’s view, the transition animations

take about 3 seconds. It takes a significantly less amount of time to open two files consecutively in

Visual Studio.

Another possible explanation for observing faster task completion times with Visual Studio is that,

Code Park provides more interaction capabilities compared to Visual Studio. Also 3D interactions
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are inherently slower compared to 2D interactions because of the added degree of freedom. When a

user is inside a code room in Code Park, they have the freedom of walking around, looking at the

wallpapers or clicking on the wallpapers to inspect the code more closely. All these interactions

take time. We also gained some insight about this issue from a different perspective. Often times,

after we assigned a task to a participant, we noticed that some participants started to “play” with the

interface or wander about aimlessly for a few seconds: due to the game-like environment of Code

Park, they occasionally walked around the room and inspected the visual aspects of the environment,

or would make a verbal note about something in the environment that was irrelevant to the assigned

task (such as how realistic the reflection effect was on the floor tiles, or how the grass texture looked

unrealistic).

Focusing on the quantitative results based on the experience level of the participants, reveals other

findings. As one would expect, and regardless of the tool, beginners generally took more time to

finish their tasks compared to experts. The other result of interest is the observed interaction effect

between the tool and the experience of the participants. Figure 6.7 presents the average time spent

on T3 based on the each tool and the participants’ experience level. The increase in the average

time spent by the beginners when they switched from Visual Studio to Code Park was much more

than this increase for experts. Without a more detailed study, it is difficult to draw any concrete

conclusions. Informally, we think a possible explanation could be that it takes more time for the

beginners to realize they do not know how to tackle T3. As a result, they take their time and explore

the code further with Code Park, hoping to find a clue that aids them in completing the task.

Considering the code base aspect of our study and focusing on the quantitative results, we see that

the choice of code base only affected the time spent for completing T3 and T5. This observation can

be explained by noting the difference in the sizes of the two code bases. As detailed in Table 6.1,

MG is larger and more cluttered than LM. For T5, where the participants are asked to go through

the code, it generally took them longer to browse through MG compared to LM. Other than task
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completion time, the choice of code base did not significantly affect the qualitative results. This

bolsters our initial assumption that the two code bases were very similar and the choice of the code

base, would not significantly affect our results.
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CHAPTER 7: CODE PARK V2 - 3D IDE

In this iteration, we focused on adding two main features that most of the participants from the

previous study asked for. The two features were editing code and compiling code within the Code

Park environment. With these two features, Code Park became more and more like a real and usable

IDE. We also added support for Java because it is one of the most popular languages based on the

tutorials that are searched for it on the web1. Users also can create a new project from scratch and

start to work on it with Code Park. This feature also supports adding a new class and placing this

class in a desirable location. They also can replace or even delete an existing class. All the user’s

project data (all the classes and their location in Code Park) will save in a file so the users can

continue working on their project later.

1http://pypl.github.io/PYPL.html
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Figure 7.1: Editing code on wall with all the basic editor functionality. The blue border helps users
to know that they are in editing mode.

Users can edit a class by going to the code viewing mode and then start editing the code. We added

a blue border around the screen in editing mode in order to help users understand that they are in a

different mode. Editing mode supports all the main functionality of the basic editor such as selecting

a part of text and copy, cut or pasting it (See Figure 7.1). All these functionalities implemented to

work in the 3D environment and on the exact same code canvas that user reached. In this way users

can maintain their spatial awareness and remember the position of the function that they wrote.
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Figure 7.2: Showing error on code canvas. Users can hover the mouse over the red dot and more
detail about the bug in that line will be showed.

It is an essential part of every IDEs to have the ability to compile and run a code base. We added this

ability as a built-in feature which helps users to compile and debug their own code without leaving

the Code Park environment. In this version of Code Park we only support console application

programs so we implemented a terminal within the Code Park to show the output of compiler and

output of the developed program itself (see Figure 7.3). To do so we used Java JDK installed on

users’ machine. We sent all the compile instructions to the Microsoft Windows Command Prompt

and read the output from it. Then we parsed the output to find out if the user’s application compiled

without errors or have not.

Based on the output’ parse result it could have two different outcomes: the code, complied without

any error and the terminal showed the successful note (see Figure 7.3a). The other outcome could
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happen when the code has some errors. In that case the terminal showed the output of the compiler

(see Figure 7.3b). After we parsed the output, in the case of containing some errors we can determine

the exact location of each errors in the code. With showing the error on the code canvas, users could

find and resolve the bug much faster and easier like in the most common IDEs (see Figure 7.2). If

program compiled without any error users can run their code and see the output of their application

on the terminal (see Figure 7.3c).

(a) Compiled without error. (b) Compiled with errors

(c) Compiled program output

Figure 7.3: Compiler output
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CHAPTER 8: CODE PARK V2 EVALUATION

Evaluation: First Part

As mentioned in previous chapter in this version of Code Park we focus on adding two main

functionally that most common IDEs have: editing and compiling code. To evaluate these features

and gauge the usability of our system, we designed and performed a new user study with two parts.

We decided to use Java in our study therefore we recruited a bigger variety of users because it

is one of the languages that was taught to freshmen students in Computer Science. We gave an

assignment to the participants and asked them to work on it within a week on their own laptop. We

were interested in studying the effects of regular developing with the Code Park.

Participants and Experience Design

We recruited 9 participants (8 males and 1 female ranging in age from 18 to 29 with a mean age of

22.8). Our requirements for participants were that they should be familiar with the Java language

and also brought their own laptop. Each participant was compensated with $20 for their efforts ($5

for the first session and $15 for the second session). Like the previous study each participant was

given a pre-questionnaire containing some demographic questions as well as some questions asking

about their experience in developing Java applications.

After completing the pre-questionnaire, the participants were given a quick tutorial of Code Park

and given a brief explanation of each feature of Code Park. Then the Code Park was installed on

their laptop and an assignment was given to them to work on it within a week. They were asked for

to implement two classes called Library and Book with requested functions. More details can be

found in Appendix.
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After a week the participants came back with the assignment completed. They were asked to

complete a post-study questionnaire to share their overall experience. The responses to these

questions were measured on a 7-point Likert scale (1 = the most negative response, 7 = the most

positive response). This questionnaire is detailed in Table 8.1.

Table 8.1: Post-Study questionnaire. Participants answered these questions on a 7-point Likert scale.
We used this data for our qualitative analysis.

Post Study Questionnaire

Q1 I found it easy how to use Code Park.

Q2 I found it easy how to learn using Code Park.

Q3 I think that I would like to use Code Park frequently.

Q4 I found the various functions in Code Park were well integrated.

Q5 It was easy to navigate through the code with Code Park.

Q6 It was easy to write code in Code Park.

Q7 It was easy to work on a project with Code Park.

Q8 How much did you like the Code Park?

Q9 How did you feel when using the interface?

Q10 It was easy to find what I wanted in the code using Code Park.

Results and Discussion

All the participants finished the assignment in the time frame that we asked which was a week. In our

post-study questionnaire, we asked approximately how long did it take to finished the assignment?

The mean time based on 9 participants response was approximately one and a half hour. After

participants gave us their completed assignment we captured a screenshot to see how they placed
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their classes in Code Park environment.

As it shown in Figure 8.1 some of the participants finished the assignment with three classes while

the others have done it with only two. That is because some of them created a separate class as the

main class while the others wrote the main function in one of the two classes they created before.

The other observation shows that the ones that used three classes, placed them that resemble a

triangle shape. Also, the others with two classes positioned theirs in a horizontal manner instead of

vertical. The possible explanation for this observation could be that the feature of the brain which

tends to organize objects around it in a meaningful shapes.

(a) Participant 1 (b) Participant 2 (c) Participant 3

(d) Participant 4 (e) Participant 5 (f) Participant 6

(g) Participant 7 (h) Participant 8 (i) Participant 9

Figure 8.1: Screenshots of participants completed assignment.
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Figure 8.2: Mean responses to the post-study questionnaire.

The average rating for post-study questionnaire’s questions are shown in Figure 8.2. This result

can be discussed from various aspect. It shows that except Q3, Q6 and Q9 all the other answers

are beyond the average scale. It is evident that the participants found easy how to learn using the

Code Park (Q2), how to use the Code Park (Q1) and find what they wanted in the Code Park (Q10).

Q7 also shows that it was easy for participants to work on a project with Code Park. Q4 indicates

that participants found all the features and functions was well integrated into Code Park. Also, they

believed that it was easy to navigate through code (Q5). Q8 also shows that how much they like

Code Park.

A possible explanation for why the participants didn’t want to use Code Park frequently (Q3) or

why they didn’t find writing code in Code Park easy (Q6) could be the 3D environment itself. All of

the participants used to write code on a 2D text-based environment for their daily usage. Comparing

to Code Park with all the animations for the transition between classes, 2D text-based environment
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is much faster and maybe that is the cause of the participants’ frustration (Q9). Another explanation

for these rating could be because we installed Code Park on their system they taught that this is the

complete and fully functional software and any small bug make them frustrated. Also, lack of some

features such as autocomplete or the option to see multiple files at the same time may lead to these

result.

Generally, our results indicate that we achieved our goals to create an environment that is fun and

engaging that users also can work on a project from scratch to the end and edit or compile a code

base. The environment that based on some participants comments ”which you can easily swap

between the class and see the code overview” or ”easy to navigate through the classes which are

cool”. One of the other participants said that ”Code Park has wonderful UI and it was fun to use

it”.

Evaluation: Second Part

As we mentioned we ran a user study with two parts. In the second part we were curious about

the suitability of Code Park in the task of organizing an existing project. Therefore the users are

tasked with organizing an existing project in Code Park in any way they saw fit. Each participant

was tasked with placing all 33 classes of an existing project in CP’s environment in a manner that

they saw reasonable. As a result, they were free to organize the classes in any way they preferred.

We separated our participants into two groups of 5 and 4.

The classes in the project that was given to the first group were already organized into directories

based on their relation (e.g. classes that handled user input were all inside of a directory called

“input”). Conversely, the classes in the project that was given to the second group were not organized

in any particular manner (i.e. all classes were inside the same directory). The goal of such separation
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was to observe whether grouping the classes based on their inherent relationships would affect users’

decisions. At the end, they were asked to explain why they organize the classes like they did. All

the questionnaires and assignment can be found in the Appendix.

Result and Discussion

The second part of our study was to ask the participants to organize an existing project consist of

33 classes in Code Park environment. We asked them to arrange this classes that make them feel

confident about the location of each class and make it easier for them to remember and access to

each file. We took a screenshot from each participants arrangement and they are shown in Figure

8.3.
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(a) Participant 1

(b) Participant 2
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(c) Participant 3

(d) Participant 4
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(e) Participant 5

(f) Participant 6
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(g) Participant 7

(h) Participant 8
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(i) Participant 9

Figure 8.3: Screenshots of participants project arrangement.

As evident in Figure 8.3a to 8.3e, the organization performed by the participants mostly followed

the directory-based organization of the project that was given to them. Some participants chose to

place the contents of each directory in a separate line while others chose to spatially group them into

a group of adjacent blocks. We asked the participants about their reasoning for such arrangements

and obtained the following responses:

Participant 1: “Folders were arranged spatially in groups. Classes that appeared

related by name were sub-grouped.”

Participant 2: “[I kept] directories grouped together.”

Participant 3: “I just arranged classes of a particular folder in each row.”
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Participant 4: “The classes were arranged alphabetically for each folder and I ar-

ranged the classes in the same folder in the same line.”

Participant 5: “I tried to group the related class together based on the usefulness and

field.”

Figure 8.3f to 8.3i depict the results obtained from the second group of participants. When asked

about their reasoning for their decisions, the following responses were obtained:

Participant 6: “When arranging the classes my first concern was to group similar

classes together. After considering which groups existed, I tried to come up with a

hierarchy based on the classes size. So I put bigger classes on the side and all the

smaller ones in the middle.”

Participant 7: “I tried to place the rooms in the chunk of similar classes. My priority

was to place them in such a way that they are easy to find again.”

Participant 8: “I grouped the rooms based on their classes’ name.”

Participant 9: “Big models together. Smaller ones in the middle so I can find them

easier.”

The results show a possible relation between the user’s cognitive understanding of the codebase

and their decisions in organizing building block of the project when working with CP. As shown in

Figure 8.3, .

In cases where the project had an inherent organization by means of directories, the users mostly

followed that same organization when working with CP. However, if the project lacked an inherent

organization, the users’ decisions were guided either by the size of each class or the semantic

relationship of those classes. The users mostly elected to organize similar parts of the project in the
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close proximity of each other. This is inline with the results observed by Abbes et al. [40]. Abbes et

al. reported that the increase in spatial dispersion of objects results in more difficulty in processing

and attentional allocation.
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CHAPTER 9: LIMITATION AND FUTURE WORK

Limitation

There are a few notable limitations associated with the design of our usability study and CP in

general. First, we realize that our comparison with VS in second user study could potentially bias

the results. This is due to the fact that most C# developers have experience with VS and their

prior familiarity with it could affect their responses. Second, comparing VS which is fast and

responsive to an interface that has animations and is slower may not result in a completely fair

assessment. Some participants also pointed this out and felt CP was generally slower than VS and

that first-person “walking speed was slow” and the interface needed “more polishing”.

Future Work

First, the whole environment needs to be improved; we believe with more refinements, it can

improve the user’s experience and make the interface more fluid and natural. We also plan to

incorporate more functionality into Code Park such as auto-complete text or supporting inheritance

(showing related classes with an arrow or different color), mainly because these two were the most

requested features by our user studies’ participants.

Implementing Code Park as a plugin for Microsoft Visual Studio is also worth exploring. In this

case we can combine the power of Visual Studio features such as text editor with Code Park 3D

code visualization features.

Furthermore we can change the layout of Code Park and put the classes in 3D space with 3DOF

(Degree Of Freedom). In that case we move from 2.5D in current version (3D classes only have
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2DOF) to completely 3D environment. Then we can compare these two versions and study the

affect of adding new dimension in organizing classes on Code Park usability.

In the third user study it may be worth considering giving participants a more complicated project

to work on. It will reveal what the limitation of our design might be and where we should improve

Code Park.

Additionally, performing a more thorough study involving more participants is worth considering.

As such, a possible means of studying would be to observe how Code Park would affect the learning

of a group of novice programmers in (say) a semester-long course similar to the work of Saito et al.

[36] or Buchanan and Laviola [41]. It would be interesting to perform a similar study on Code Park

and evaluate its effectiveness on programming.

Other possible avenues for future work are using and evaluating Code Park in different environments,

such as virtual reality (VR) and augmented reality (AR). The first-person view mode that Code

Park currently employs makes it suitable for adaptation to VR. Further, in addition to viewing and

studying code structure, the programmers would like to be able to write code. As such, it is sensible

to design an AR system that employs Code Park to aid in code understanding and development.
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CHAPTER 10: CONCLUSIONS

We presented Code Park, a 3D code visualization tool designed for improving code understanding.

Code Park lays out an existing code base in a 3D environment and allows the user to explore, edit

and compile the code in two modalities, a god-view mode and a first-person view mode.

Through 3 different user studies, we evaluated our design and the usability of our software. We

improved our design in each iteration based on the result of the previous user study. The analysis of

our results demonstrated the benefits of Code Park as a viable tool for understanding an existing

code base. The results also show that Code Park is reliable for working on a project from scratch to

the end. Our participants found Code Park to be easy to learn, instrumental in understanding as well

as remembering the structure of a code base, and enjoyable to use.

Finally, users feedback to the application has shown that there is still a lot to do, that is very valuable

to be explored. Adding new features and also new long user study with more participants would be

essential.
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APPENDIX B: QUESTIONNAIRES AND TASKS USED IN USER

STUDIES
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 Pre-Questionnaire Participant: _______ 
 

Code Park V1 Study: Pre Questionnaire 

Please complete this survey. 

Age:  _______________ 

Major: _________________________________ 

Gender: 

Male Female 
 

1- Academic Standing: 

Freshman Sophomore Junior Senior Graduate N/A 
 

2- How many years you have experience as a developer?  

Less Than a year 1 – 2 years 2 – 5 years More than 5 years N/A 
 

3- Rate yourself as a developer  

1 2 3 4 5 6 7 
Novice   Intermediate   Expert 

 

4- Rate your experience with C# language  

1 2 3 4 5 6 7 
Novice   Intermediate   Expert 

 

5- Rate your experience with Visual Studio IDE  

1 2 3 4 5 6 7 
Novice   Intermediate   Expert 

 

6- Rate your interest in computer programming  

1 2 3 4 5 6 7 
Not Interested    Normal    Very 

Interested 
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 Pre-Questionnaire Participant: _______ 
 

 

7- I think computer programming is too difficult for me to learn 

1 2 3 4 5 6 7 
Very Difficult   Fair    Very Easy 

 

8- Generally, it is hard for me to remember a program’s structure 

1 2 3 4 5 6 7 
Very Hard   Fair    Very Easy 

 

9- What was the largest code you ever developed based on lines of code and the number of classes? 
(Describe it) 

 

10- Have you ever collaborated on a project after the project had started? Did you need to understand 
the code first and then continue working on it? (Describe it) 
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 C# Skill Test Participant: _______ 
 

Question 1: 
Which of the following statements is CORRECT about the C#.NET code snippet given below? 
 
 namespace IMConsoleApplication 
{ 
    class Sample 
    { 
        public int index; 
        public int[] arr = new int[10]; 
         
        public void fun(int i, int val) 
        { 
            arr[i] = val; 
        } 
    } 
      
    class MyProgram 
    { 
        static void Main(string[] args) 
        { 
            Sample s = new Sample(); 
            s.index = 20; 
            Sample.fun(1, 5); 
            s.fun(1, 5); 
        } 
    } 
}  
 
Options:  

• s.index = 20 will report an error since index is public. 
• The call s.fun(1, 5) will work correctly. 
• Sample.fun(1, 5) will set a value 5 in arr[1]. 
• The call Sample.fun(1, 5) cannot work since fun() is not a static function. 
• arr being a data member, we cannot declare it as public. 

 

 

 

 

 
 
 

Question 2: 
Blueberries cost more than strawberries. 
Blueberries cost less than raspberries. 
Raspberries cost more than both strawberries and 
blueberries. 
 
If the first two statements are true, the third statement is:  
Options:  
 

• true 
• false 
• uncertain 
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 C# Skill Test Participant: _______ 
 
 
Question 3: 
What will happen if the value of nNum is 2 and the following code is compiled and executed? 
switch(nNum) 
{ 
  case 1: 
   Console.WriteLine("nNum = 1"); 
   break; 
  case 2: 
   Console.WriteLine("nNum = 2"); 
  default: 
   Console.WriteLine("nNum is not 1 nor 2"); 
  break; 
}  
 
Options:  

• The code will output: nNum = 2 
• The code will output: nNum is not 1 nor 2 
• The code will output: nNum = 1 
• The code will output: nNum = 2 \n nNum is not 1 nor 2 

 

Question 4: 
Consider the following code: 
        string s1 = ''Old Value''; 
        string s2 = s1; 
        s1 = ''New Value''; 
        Console.WriteLine(s2); 
What will be the output printed?  
 
Options:  
 

• ''New Value'' because string is reference type 
• ''Old Value'' because string is value type 
• ''New Value'' because string is value type 
• ''Old Value'' because string is reference type 
• ''Old Value'' because string is reference type which is treated as a special case by assignment 

operator 
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 C# Skill Test Participant: _______ 

• namespace IMConsoleApplication 
{ 
  class MyProgram 
  { 
   static void Main(string[] args) 
   { 
    import n1; 
    Point x = new Point(); 
    x.fun(); 
    import n2; 
    Point y = new Point(); 
    y.fun(); 
   } 
  } 
} 

 • import n1; 
import n2; 
namespace IMConsoleApplication 
{ 
  class MyProgram 
  { 
   static void Main(string[] args) 
   { 
    n1.Point x = new n1.Point(); 
    x.fun(); 
    n2.Point y = new n2.Point(); 
    y.fun(); 
   } 
  } 
} 

 

• namespace IMConsoleApplication 
{ 
  class MyProgram 
  { 
   static void Main(string[] args) 
   { 
    using n1; 
    Point x = new Point(); 
    x.fun(); 
    using n2; 
    Point y = new Point(); 
    y.fun(); 
   } 
  } 
} 

 

• using n1; 
using n2; 
namespace IMConsoleApplication 
{ 
  class MyProgram 
  { 
   static void Main(string[] args) 
   { 
    n1.Point x = new n1.Point(); 
    x.fun(); 
    n2.Point y = new n2.Point(); 
    y.fun(); 
   } 
  } 
} 

 

 

Question 5: 

If a class called Point is present in namespace n1 as well as in namespace n2, then which of the following 
is the CORRECT way to use the Point class?  

 
Options:  
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 Post Experiment Questionnaire (VS) Participant: _______ 
 

Code Park V1 Study: Post Task Questionnaire 

Visual Studio 

Please answer all questions below.  Read the directions before answering any question.  

The following questions use a ranking scale from 1 – 7.   

I found it easy to work with Visual Studio 

1 2 3 4 5 6 7 
Hard to use   Fair   Easy to use 

 

I found it easy to become familiar with Visual Studio. 

1 2 3 4 5 6 7 
Hard to learn   Fair   Easy to learn 

 

Visual Studio helps me become familiar with code base’s structure. 

1 2 3 4 5 6 7 
Not Helping   Fair   Helping a lot 

 

It was easy to navigate through the code with Visual Studio. 

1 2 3 4 5 6 7 
Hard    Fair   Easy 

 

It was easy to find the definition of some variable/method with Visual Studio. 

1 2 3 4 5 6 7 
Hard    Fair   Easy 

 

How much did you like the Visual Studio? 

1 2 3 4 5 6 7 
Not much   Fair   Very much 

 

How did you feel when using the interface? 

1 2 3 4 5 6 7 
Frustrated    Fair   Enjoyed 
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 Post Experiment Questionnaire (VS) Participant: _______ 
 

It was easy to find what I wanted in the code using Visual Studio. 

1 2 3 4 5 6 7 
Hard    Fair   Easy 

 

List the most positive aspects of the user interface. 

 

List the most negative aspects of the user interface. 

 

Additional comment 
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 Post Experiment Questionnaire (CP) Participant: _______ 
 

Code Park V1 Study: Post Task Questionnaire 

Code Park 

Please answer all questions below.  Read the directions before answering any question.  

The following questions use a ranking scale from 1 – 7.   

I found it easy to work with Code Park 

1 2 3 4 5 6 7 
Hard to use   Fair   Easy to use 

 

I found it easy to become familiar with Code Park. 

1 2 3 4 5 6 7 
Hard to learn   Fair   Easy to learn 

 

Code Park helps me become familiar with code base’s structure. 

1 2 3 4 5 6 7 
Not Helping   Fair   Helping a lot 

 

It was easy to navigate through the code with Code Park. 

1 2 3 4 5 6 7 
Hard    Fair   Easy 

 

It was easy to find definition of some variable/method with Code Park. 

1 2 3 4 5 6 7 
Hard   Fair   Easy 

 

How much did you like the Code Park? 

1 2 3 4 5 6 7 
Not much   Fair   Very much 

 

How did you feel when using the interface? 

1 2 3 4 5 6 7 
Frustrated    Fair   Enjoyed 
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 Post Experiment Questionnaire (CP) Participant: _______ 
 

It was easy to find what I wanted in the code using Code Park. 

1 2 3 4 5 6 7 
Hard   Fair   Easy 

 

List the most positive aspects of the user interface. 

 

List the most negative aspects of the user interface. 

 

Is there anything you would like to see the Code Park do that is not currently supported? 

 

Additional comment 

 

 

 

 

76



www.manaraa.com

 Memory Game Tasks Participant: _______ 
 

Task List for Memory Game 
 

1. Examine the game and find the user to login 
 
 

2. Find an abstract class in the code base. 
 
 

3. What is the relationship between the "CardBack" class and the "CardFace" class? 
 
 

4. Try to load a game without looking at the stack trace, pinpoint the place the issue is occurring. 
 
 

5. Imagine you are tasked with adding a feature to the game so that every time the user fails to 
correctly match a card, one point is deducted from the player’s total score. Can you pinpoint the 
place to add the necessary logic to the code to support this? 

 
 

6. Can you remember position of _______ Class/method? 
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 Library Manager Tasks Participant: _______ 
 

Task List for Library Manager 
 

1. By examining the code base, try to find valid username and password to log into the system! 
 
 

2. Create a username for yourself 
 
 

3. Find an abstract class in the code base. 
 
 

4. What is the relationship between the "Admin" class and the "User" class? 
 
 

5. Log in with the "admin" user and try deleting your username. Without looking at the stack trace, 
pinpoint the place the issue is occurring. 
 

 
6. Imagine you are tasked with adding some extra functionalities to the users of type “Staff”. For 

instance, we are interested in allowing staff members to edit book information. Can you pinpoint 
the place to add the necessary logic to the code to support this? 

 
 

7. Can you remember position of _______ Class/method? 
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 Post Questionnaire Overall  Participant: _______ 
 

Code Park V1 Study: Post Study Questionnaire 

Please answer all questions below.  Read the directions before answering any question.  

Select one of the interfaces for each question. 

Which interface is more comfortable to use? 

Code Park Visual Studio 
 

Which interface is more likeable? 

Code Park Visual Studio 
 

Which interface is more natural?  

Code Park Visual Studio 
 

Which interface is easier to use? 

Code Park Visual Studio 
 

Which interface is more fun to use? 

Code Park Visual Studio 
 

Which interface is more frustrating?  

Code Park Visual Studio 
 

Which interface helps you more in remembering code base structure? 

Code Park Visual Studio 
 

For learning a code base I would prefer to use _____ 

Code Park Visual Studio 
 

Once I am already familiar with a code base, I would preferred to use _____ for additional work with the 
code base. 

Code Park Visual Studio 
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 Post Questionnaire Overall  Participant: _______ 
 

For learning the structure of code base I think I preferred to use _____ 

Code Park Visual Studio 
 

For finding a particular class/variable I would preferred to use _____ 

Code Park Visual Studio 
 

For tracking down a bug I would preferred to use _____ 

Code Park Visual Studio 
 

Overall which interface is better?  

Code Park Visual Studio 
 

Additional comment 
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 Pre-Questionnaire Participant: _______ 
 

Code Park V2 Study: Pre Questionnaire 

Please complete this survey. 

Age:  _______________ 

Major: _________________________________ 

Gender: 

Male Female 
 

Academic Standing: 

Freshman Sophomore Junior Senior Graduate N/A 
 

How many years you have experience as a developer?  

Less Than a year 1 – 2 years 2 – 5 years More than 5 years N/A 
 

Rate yourself as a developer  

1 2 3 4 5 6 7 
Novice   Intermediate   Expert 

 

Rate your experience with Java language  

1 2 3 4 5 6 7 
Novice   Intermediate   Expert 

 

Rate your experience with any Java IDEs (Netbeans, Eclipse, …)  

1 2 3 4 5 6 7 
Novice   Intermediate   Expert 

 

Rate your interest in computer programming  

1 2 3 4 5 6 7 
Not Interested    Normal    Very 

Interested 
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 Pre-Questionnaire Participant: _______ 
 

Generally, it is hard for me to remember a program’s structure 

1 2 3 4 5 6 7 
Very Hard   Fair    Very Easy 

 

What was the largest code you ever developed based on lines of code and the number of classes? 
(Describe it)  

 

Have you ever collaborated on a project after the project had started? Did you need to understand the 
code first and then continue working on it? (Describe it) 
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Code Park Assignment 

The libraries of SmallTownX need a new electronic rental system, and it is up to you to build it. 
SmallTownX has two libraries. Each library offers many books to rent. Customers can print the list of 
available books, borrow, and return books. 

Problem: 

You need to develop two classes called Library and Book. 

 

Book: 

• The Book library needs to have a constructor that get the name of the book and save it in the variable 
within the class.  

• A Boolean value that shows if the book is borrowed or not. 
• Two methods named as borrowed and returned with appropriate functionality. 
• A method to check if a book is borrowed or not. 
• A method to get the title of the book. 

For test you need to have a functionality in your main method to create this output: 

Title (should be The Da Vinci Code): The Da Vinci Code  

Rented? (should be false): false  

Rented? (should be true): true 

Rented? (should be false): false 

 

Library: 

The Library needs to have a constructor to get the address of the library. 

• An addBook method that get a Book object as an argument and add it to the library. 
• A parintAddress method to print address of the library. 
• A borrowBook method that borrow a book with its name. 
• A returnBook method that return a book with its name. 
• A printAvailableBook method that print all the available books in the library. 

For test first you need to create two libraries and add four books to them. 

Library firstLibrary = new Library("10 Main St."); 

Library secondLibrary = new Library("228 Liberty St."); 

// Add four books to the first library 

firstLibrary.addBook(new Book("The Da Vinci Code")); 

firstLibrary.addBook(new Book("Le Petit Prince")); 

firstLibrary.addBook(new Book("A Tale of Two Cities")); 

firstLibrary.addBook(new Book("The Lord of the Rings")); 
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Then have a functionality in your main method to create this output: 

Library addresses: 

10 Main St. 

228 Liberty St. 

 

Borrowing The Lord of the Rings: 

You successfully borrowed The Lord of the Rings 

Sorry, this book is already borrowed. 

Sorry, this book is not in our catalog. 

 

Books available in the first library: 

The Da Vinci Code 

Le Petit Prince 

A Tale of Two Cities 

 

Books available in the second library: 

No book in catalog 

 

Returning The Lord of the Rings: 

You successfully returned The Lord of the Rings 

 

Books available in the first library: 

The Da Vinci Code 

Le Petit Prince 

A Tale of Two Cities 

The Lord of the Rings 
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 Post Task Questionnaire Participant: _______ 
 

Code Park V2 Study: Post Task Questionnaire 

Why do you arranged the rooms like this? What was your priority? What was you criterion?  
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 Post Experiment Questionnaire Participant: _______ 
 

Code Park V2 Study: Post Study Questionnaire 

Please answer all questions below.  Read the directions before answering any question.  

The following questions use a ranking scale from 1 – 7.   

I found it easy how to use CodePark. 

1 2 3 4 5 6 7 
Hard to use   Fair   Easy to use 

 

I found it easy how to learn using CodePark. 

1 2 3 4 5 6 7 
Hard to learn   Fair   Easy to learn 

 

I think that I would like to use CodePark frequently. 

1 2 3 4 5 6 7 
Strongly 
disagree 

  Fair   Strongly Agree 

 

I found the various functions in CodePark were well integrated. 

1 2 3 4 5 6 7 
Strongly 
disagree 

  Fair   Strongly Agree 

 

It was easy to navigate through the code with CodePark. 

1 2 3 4 5 6 7 
Hard    Fair   Easy 

 

It was easy to write code in CodePark. 

1 2 3 4 5 6 7 
Hard    Fair   Easy 

 

It was easy to work on a project with CodePark. 

1 2 3 4 5 6 7 
Hard    Fair   Easy 

How much did you like the CodePark? 

1 2 3 4 5 6 7 
Not much   Fair   Very much 

 

86



www.manaraa.com

 Post Experiment Questionnaire Participant: _______ 
 

How did you feel when using the interface? 

1 2 3 4 5 6 7 
Frustrated    Fair   Enjoyed 

 

It was easy to find what I wanted in the code using CodePark. 

1 2 3 4 5 6 7 
Hard   Fair   Easy 

 

How long did it take to finish the assignment? (Approximately in hour) 

 

List the most positive aspects of the user interface. 

 

List the most negative aspects of the user interface. 

 

Is there anything you would like to see the CodePark do that is not currently supported? 

 

Additional comment 
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